Autonomous parts and decomposition of regular tournaments

نویسندگان

  • Annie Astié-Vidal
  • Vincent Dugat
چکیده

Astit-Vidal, A. and V. Dugat, Autonomous parts and decomposition of regular tournaments, Discrete Mathematics 111 (1993) 27-36. In this article we present the action of a decomposition criterion for regular tournaments, called W-decomposition on tournaments presenting autonomous parts, and especially those that are undecomposable with respect to W-decomposition.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Infinite families of tight regular tournaments

In this paper, we construct infinite families of tight regular tournaments. In particular, we prove that two classes of regular tournaments, tame molds and ample tournaments are tight. We exhibit an infinite family of 3-dichromatic tight tournaments. With this family we positively answer to one case of a conjecture posed by V. Neumann-Lara. Finally, we show that any tournament with a tight mold...

متن کامل

Two-path convexity in clone-free regular multipartite tournaments

We present some results on two-path convexity in clone-free regular multipartite tournaments. After proving a structural result for regular multipartite tournaments with convexly independent sets of a given size, we determine tight upper bounds for their size (called the rank) in clone-free regular bipartite and tripartite tournaments. We use this to determine tight upper bounds for the Helly a...

متن کامل

PACKING AND DECOMPOSITIONS IN TRANSITIVE TOURNAMENTS – PhD THESIS

In this thesis we shall deal with oriented graphs. The motivation for us is a result by Sali and Simonyi (see also a short proof by Gyárfás) where the existence of the decomposition of transitive tournaments on two isomorphic graphs is shown. In this thesis we start to study a problem of packing in transitive tournaments and we consider decompositions and partitions of transitive tournaments. T...

متن کامل

The morphology of infinite tournaments; application to the growth of their profile

A tournament is acyclically indecomposable if no acyclic autonomous set of vertices has more than one element. We identify twelve infinite acyclically indecomposable tournaments and prove that every infinite acyclically indecomposable tournament contains a subtournament isomorphic to one of these tournaments. The profile of a tournament T is the function φT which counts for each integer n the n...

متن کامل

The Morphology of Infinite Tournaments. Application to the Growth of Their Profile Youssef Boudabbous and Maurice Pouzet

A tournament is acyclically indecomposable if no acyclic autonomous set of vertices has more than one element. We identify twelve infinite acyclically indecomposable tournaments and prove that every infinite acyclically indecomposable tournament contains a subtournament isomorphic to one of these tournaments. The profile of a tournament T is the function φT which counts for each integer n the n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete Mathematics

دوره 111  شماره 

صفحات  -

تاریخ انتشار 1993